Bayesian hidden Markov Model for DNA segmentation : A prior sensitivity analysis
نویسندگان
چکیده
The focus of this paper is on the sensitivity to the specification of the prior in a hidden Markov model describing homogeneous segments of DNA sequences. An intron from the chimpanzee α-fetoprotein gene, which plays an important role in embryonic development in mammals is analysed. Three main aims are considered : (i) to assess the sensitivity to prior specification in Bayesian hidden Markov models for DNA sequence segmentation; (ii) to examine the impact of replacing the standard Dirichlet prior with a mixture Dirichlet prior; and (iii) to propose and illustrate a more comprehensive approach to sensitivity analysis, using importance sampling. It is obtained that (i) the posterior estimates obtained under a Bayesian hidden Markov model are indeed sensitive to the specification of the prior distributions; (ii) compared with the standard Dirichlet prior, the mixture Dirichlet prior is more flexible, less sensitive to the choice of hyperparameters and less constraining in the analysis, thus improving posterior estimates; and (iii) importance sampling was computationally feasible, fast and effective in allowing a richer sensitivity analysis.
منابع مشابه
Bayesian hidden Markov model for DNA sequence segmentation: A prior sensitivity analysis
The focus of this paper is on the sensitivity to the specification of the prior in a hidden Markov model describing homogeneous segments of DNA sequences. An intron from the chimpanzee α-fetoprotein gene, which plays an important role in embryonic development in mammals is analysed. Three main aims are considered : (i) to assess the sensitivity to prior specification in Bayesian hidden Markov m...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملA comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models
This paper describes a Bayesian approach to determining the number of hidden states in a hidden Markov model (HMM) via reversible jump Markov chain Monte Carlo (MCMC) methods. Acceptance rates for these algorithms can be quite low, resulting in slow exploration of the posterior distribution. We consider a variety of reversible jump strategies which allow inferences to be made in discretely obse...
متن کاملA Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering
In this work, we propose a Markov random field-regulated Pitman–Yor process (MRF-PYP) prior for nonparametric clustering of data with spatial interdependencies. The MRF-PYP is constructed by imposing a Pitman–Yor process over the distribution of the latent variables that allocate data points to clusters (model states), the discount hyperparameter of which is regulated by an additionally postula...
متن کاملDirichlet Process Mixture Model with Spatial Constraints
Dirichlet process (DP) provides a nonparametric prior for the mixture model that allows for the automatic detection of the number of hidden states. Recent introduction of variational Bayesian (VB) inference as a deterministic approach makes it practical to large-scale realworld problems. However, the models proposed so far have intrinsic limitations when used on noisy datasets and in situations...
متن کامل